Predicting species diversity in tropical forests
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A fundamental question In ecology Is how many specles occur
within a given area. Despite the complexity and diversity of
different ecosystems, there exists a surprisingly simple, approxi-
mate answer: the number of species is proportional to the size of
the area raised to some exponent. The exponent often tums out to
be roughly 1/4, This power law con be derived from assumptions
about the relative abundances of species or from notions of
self-similarity. Here we analyze the largest existing data set of
location-mapped species: over one million, individually identified
trees from five tropical forests on three continents. Although the
power law s a reasonable, zeroth-order approximation of our
data, we find consistent deviations from i on all spatial scales.
furthermore, tropical forests are not self-similar at areas =50
hectares. We develop an extended model of the species-area
relationship, which enables us to predict large-scale specles diver-
sity from small-scale data samples more accurately than any other
avallable method.

A primary motivation for modern ecological research is the
cffort to save as many species as possible from the sixth
great mass extinction that currently threatens them (1, 2). 1ow
does habitat loss and destruction of tropical forests relate 1o
species extinction? How many tree species must remain in an
exploited furest il primate species are to survive in it? What is
the best possible design of a natural reserve that maximizes the
number or genetic diversity of surviving species? All of these
uestions underscore the necessity 1o understand the relation-
ship between species diversity and sampled arca (3-8)—a long-
standing and controversial subject in ecology (V-11).

The earliest model of the specics—area relationship (SAR) was
introduced by Arrhenius in 1921 and posits a power law: the
number of specics, S, found in a census area, A, is given by

§ = ed’, (1

where ¢ and 2 are constams (12). Empirical observations
suggest that z is about 1/4 for many ecosystems (13). The
power law is a cornerstone for theories of biogeography
(14-16). In 1975 May (17) derived the power law by assuming
that species’ abundances follow a lognormal distribution. The
canonical lognormal distribution implies that § = N, wherc
N is the total number of individuals and ¢ is a constant,
Assuming that N is proportional to the area A, we immediatcly
obtain Eq. I withz = 1/4,

More recently, Harte er al. (18) have shown that the power law
is equivalent to self-similarity. If the fraction of species inan area
A that are also found in one-half of that area is independent
0f A, then the spatial distribution of species is self-similar. Let
Ay = Ao/2' denote the area of a rectangular patch obtained after
i bisections of the total sampled arca Aq. Denote by S; the average
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number of specics found in a patch A,. If the ratio a; = 8,/5,-,
does not depend on i then the assemblage is self-similar (18).
Sclf-similarity is cquivalent to §; = eA4f with z = —logya. Unlike
the canonical lognormal, scif-similarity does not provide an a
priori estimate of the exponent z.

Troplcal Forest Data

To test the basic principles of SARs—with an aim toward
generalizing the power law—we have analyzed five 50-hectare
(ha) plots of tropical forests across the globe. Although tropical
furests cover only 7% ol the Earth's land surface, they contain
more than half of the world's species (6). Tropical forests are well
known as the most genetically diverse, terrestrial communities
on Earth (19). Moreover, animal diversity in tropical forests
depends crucially on the diversity of plants (20).

Each of the 50-ha plots that we analyze is part of a long-term
rescarch program coordinated by the Smithsonian's Center
for Tropical Forest Science. The plots are located in the
following forests: Huai Kha Khaeng (11KK) Wildlife Sanctu-
ary, Thailand (first census); Lambir Ilills National Park,
Sarawak, Malaysia (third ccnsus); Pasoh Forest Reserve,
Peninsular Malaysia (third census); Barro Colorado Island
(BCI), Panama (first census); and Mudumalai Wildlife Sanc-
tuary, India (sccond census). For each of our plots, every
[ree-standing, woody stem over | em in diamcter has been
identified to species. We include all such stems in our analyses.
(Our gualitative results arc unchanged if we include, instead,
stems over 5 cn in dinmeter.) The number of such stems, and
the number of species among them, varies greatly from plot to
plot (Fig. 1).

Fig. 2a shows the specics-arca relationship for the five tropical
forests compared with the best-fit power law. The average slope
for the forests is z=~0.25. As supgested by May, the power law
tends to overestimate the slope at large areas and underestimate
the slope at small areas (17). But the extent o which the power
law [ails is often poorly recognized in the ccological literature (3,
18, 21). Previous research has uncovered the power law's failure
for small areas, but has downplayed its deviations for areas larger
than 2 ha (22). Fig. 2b shows the dependence of the parameter
a; = §,/8,-, on arca. The ratio a; describes the average fraction
of specics that persist upon the ith bisection; therefore we call a;
the spatial persistence parameter. Self-similarity would require
that this paramcter be independent of arca (18). As the figure

Abbreviations: SAR, ipecies ares curve; ha, hectare; DCI, Barro Colorado luand; HKK, Hual
Kha Khaeng.
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The locations of five troplcal forest plots across the globe. Each census encompasses 50 ha of forest within which every woody stem greater than 1 cm
measured for girth, and spatially mapped to <1-m accuracy. The name, country, number of trees, and number of

speciesis indicated for each plot. The forests vary widely Inspecies diversity and environment. Pasoh and Lambir (Malaysia) are evergreen, dipterocarprainforests;
BCI (Panama) is a lowland, molst forest, with a &month dry season; HKK (Thailand) and Mudumalal (India) are the only forests that are regularly subject to fires.
For 8 complete |ist of references, comsuit the Center for Tropical Forest Science web site at http://www.strl.org,

shows, however, g, is not constant for any range of arcas between
I m? and 50 ha. Hence, tropical forests are conclusively not
scll-similar at these scales. The empirical form of the spatial
persistence curve, and its departure from sclf-similarity, may

result in part from aggregation of conspecifics—a possibility that
we explore in detail elsewhere (29).

A Differential Equation Approach

Instend of scll-similarity we find a consistent functional rela-
tionship between a; and the arca, A, in all five forests (Fig. 20).
This observation is striking in light of the forests’ disparate
geographic locations, climates, and overall specics diversitics.
We now introduce the spatial persistence function, a(A ). @8 @
continuous cxtension of a,. In the appendix, we use the persis-
tence values of our data to derive a canonical, two-parameter
model of a(A4). Once this function has been derived, we obtain
the SAR by solving the dilfcrential equation

logyla(A)] A 2
—lo P
Ogila 5 da 12]
Using the diversity measured in a small arca as the initial
condition in Eq. 2, we may predict the diversity of a much larger
arca, if we know a(A).

In the appendix, we derive Eq. 2 and find a general solution
of the form § = cA’exp[P(A)], where P(A4) is an infinite
polynomial in 4. We can truncate after the first #n terms to obtain

an approximate solution. Truncating after the first term leads o
the expression

S = cA’e~M, 131
lHere ¢, z, and k arc constants determined by a(A). This
approximate solution is less accurate than the complete solution
to Eq. 2, and it is only valid for a limited range of areas.
Nevertheless, the approximation has the obvious advantage ol
simplicity. Il we let n —» oo, then we recover the [ull solution to
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Eq. 2; if we let n —» (), then we reduce to the power law. Hence
the power law is a zeroth-order, special case of our general model
for the SAR.

Eq. 2 accurately predicts diversity given only a small amount
of data. Because the persistence curves are similar across the five
plots (Fig. 2b), we may usc the canonical form of a(A4) fit at one
plot to predict diversity for another plot. For example, using
BCI's persistence curve to determine a(A4) and using the diver-
sity in a single ha of Pasoh as the initial condition, we can predict
the 50-ha diversity of Pasoh within 3% on average (Fig. 3).
Conversely, Pasoh’s persistence function predicts BCl's total
diversity with 4% average crror, and Lambir's diversity with 9%
error, from a single ha of data.

Fig. 3 illustrates the extrapolative ability of Eq. 2 as compared
with the classical models of the SAR. The precision of our
method—namecly, the ability to predict 50-ha diversity within 5%
at Pasoh and BCI and 107% at Lambir—is an improvement over
other previous methods. It is 1- to 7-fold more precise than
Fisher'salpha (23), and 5- to 10-fold more precisc than the power
law. On the one hand, the increased precision of our method is
not surprising; we have uscd two parameters to describe a(A), as
opposed to the classical models, which generally requirc one
paramcter. On the other hand, given the interplot similarity of
persistence curves, in practice we need only mcasure one pa-
rameter—the diversity of a single ha—to extrapolate diversity
via Eq. 2.

Implications and Condusions

We have analyzed the largest existing data sct of location-
mapped trees in tropical forests. We find that the SAR shows
consistent deviations from the power law on all spatial scales that
were studicd, ranging from 1 m? to 50 ha. IHence, self-similarity
doces not hold over this range of areas. (There is the possibility
that tropical forests are self-similar over scales greater than 50
ha, but in the absence of further data this remains speculative.)
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Fig.2. Graphs of the SAR and the spatial persistence parameter for each of
five troplcal forests. (8) Log-log graph of the observed species-area data. Each
plot encompasses a total srea Ay ~ 50 ha, We measure the mean species
diversity, 5, found In dhjoint patches obtained by repeated bisections of Aq.
The log-log species-area dats are concave down for all five plots. The SAR is
approximated loosely by the power law, z = 0.25, whose siope Is indicated by
the trapezold (red). (b) The persistence parameter, a; = 5/5,.,, provides a
semitive tool for analyzing SARs and testing self-similarity. Self-similarity
would predict constant 8 = 27923 o 0.84, shown In red. All flve persistence

curves are seen to depart from the power-law model over the entire range of
areas.

These results might have some bearing on the longstanding
controversy surrounding SARs. Previous research has focused
onwhy the SAR has dilferent slopes in different ccosystems (11),
but in our extensive data the SAR docs not posscss a constant
slope whatsocver.

Instead of seil-similarity we propose a model of the SAR,
based on the spatial persistence function, which generalizes the
power law. This framework allows us to predict 50-ha diversity
from small-scale samples with greater accuracy than ever before.
Candidate logging protocols often are assayed at the 50- 0
100-ha scale, and they are evaluated on the proportion of
diversity that regeneratcs, as estimated from a small census (24).
Hence, an accurate method to extrapolate 50-ha diversity from
a small census will greatly benefit in the formulation of protocols
for sustainable forestry and for biodiversity surveys (25). Fur-
thermore, our methods may be extended to cstimate landscape-
scale diversity (sce Appendix). These advances may induce
ecologists to focus on the persistence curve itself as a unifying
concept. The search for a biological mechanism that cxplains the
observed persistence patterns offers an important challenge to
ccology. In the meantime, our theory provides a valuable tool for

conservation planning and a practical mcthod for estimating
diversity in the ficld.
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Appendix
In this appendix we provide the details behind the derivation of
Eq. 2, its solution, and its application to extrapolating diversity.

Derivation of Eq. 2. Given the definition of the spatial persistence
parameter, gy — 8;/8; 1, we start by deriving its relationship to

the stope of the SAR. All logarithms are hencelorth taken base
two:

S
—log(a)) = — lng(gl—:-';)

log(s, _ ;) — log(5))

log2
_ l‘jg&h - 1) — log(S,) (4]
T loglA, - ) — log(A)

The last cquality follows because Ay -y /A4; = 2. The final quantity
in Eq. 4 measures the slope of a small chord on the log-log SAR
to the right of log(A4,). We conclude that

dlog §

-~ log(a,;) = dlog A (A [5]
where i is now a continuous variable. To be more precise, the
chord to the right of log(4;) is an estimate of the derivative at
log(Ag i -1y2). Note that Eq. 5 clearly illustrates the equiva-
lence between scll-similarity (constant a) and the power law
(constant dlogS/dlogA).

Eq. 2 follows casily from Eq. 5, using the fact that dlogS/
dlogAd = A /5 - dS/dA. Note that Eq. 2 is a strict generalization
of self-similarity: if a(4) is constant, then Eq. 2 reduces to the
power law., Il a(A) = exp( -1/logd), then Eq. 2 reduces to
S(A)=logA. Tlence Eq. 2 also generalizes the logarithmic law
suggested by Gleason (26). :

Diversity Extrapolation. Eq. 2 together with the interplot simi-
larity of the persistence curves provide a method for extrap-
olating diversity over many spatial scales. For example, to
cxtrapolate diversity from a subsample of Pasoh, we use BCI
data to fita(A), and then we solve Eq. 2 according to the small,
initial condition measured at Pasoh. In effcct, this process
transiates BCI's log-log SAR so that it coincides with Pasoh’s
initial condition; nevertheless, the universality between the
forests is described more simply in terms of the persistence
paramcter, a;.

We choose to model the persistence values a; with the
simple, two-parameter family of curves Yad((a — i)/8) + Y.
(Other choices, such as a cubic model, are also possible and
produce accurate predictions at these scales and beyond. Sce
below.) Tlere @(x) is the “crror function’ given by the cumu-
lative distribution of the Gaussian: ®(x) — (2/V m) fge~"dr.
The parameter a moves the inflection point of the persistence
curve horizontally, and B determines the slope at the inflection
point. Hence B measures the maximal “acceleration” of
diversity with area, and a measurcs the spatial scale at which
aceeleration is maximized. The best-fit at BCI is given by a =
8.56, B = 8.08. For Pasoh, a = 7.73, g = 7.41; for Mudumalai,
a = 7.06 and g = 7.76.

We may cxpress all solutions to Eq. 2 in the form § =
cA’explP(A)], where P(A) is a polynominl in A of arbitrary
degree n, with no constant term. Once we specily a and 3, we
expand —log(a(A)) in a Taylor scries of order # around the point
A = 25 ha. The resulling scparable cquation can always be solved
in closed form, yielding P. For cxample, using Pasoh’s a and B
to determine a(A), the approximate solution of order n =1 is

Plotkin et al.



Fig.3. The actual SAR at Pasoh (black) compared with the SAR
srea, MacArthur's “broken stick” distribution of relative a

Area (ha)

predicted by our model and three classical models. Assuming that Individuals scale linearly with
bundances, the canonical lognormal distribution, and Fisher’s log series each ylelds a one-parameter

model of the SAR (green, red, and blue, respectively). The first two of these models were parameterized by using 25 ha of Pasoh data; 1 ha was used to
parameterize the log series. The log serles provides a fairly accurate model, but it overestimates 50-ha diversity by 21%. The canonical log normal accounts for
steeper slopes at small areas and gentler slopes at large areas, and hence It is more accurate than the broken stick (17). Our persistence method (yellow) requires
two parameters, it by using any other forest, and an Initial condition obtained from 1 ha of Pasoh data, The persistence method extrapolates 50-ha diversity
with 3% average error. The figure indicates a 1-5D confidence Interval around the extrapolation.

given by S(4) = S(lhn)A’¢**, where z — 0.125 and k —
=5.66:10 "*. For Mudumalai,z — 0.161 and k — - S5.41-10 4. This
approximation is only valid (or 4 < 50 ha, but is accuracy
compares well with the complete numerical solution: it predicts
50-ha diversity with average error 4% at Pasoh, 9% at BCI, and
16% a1 Lambir,

In practice, a numerieal solution of Eq. 2 yiclds the most
accurate SAR. We used the Fehlberg-Runge-Kutta method o
generate the prediction shown in Fig. 3. The initial condition
S(1ha) for Fig. 3 was dctermined by the diversity of a single,
random, I-ha subplot of Pasoh. The confidence interval was
constructed from 1,0(N), indcpcndcntly sampled, 1-ha initial
conditions.

We have divided our five plots into two catcgories: those that
suffer regular disturbance and those that do not. The two
tropical forests subject o regular fires, HHKK and Mudumalai,
generally should not be modeled via the persistence curve from
a more stable, moist tropical forest. The values of dy L0 dy are
generally smaller at HKK and Mudumalai than the other three
[orests. This reflects the fact that HKK and Mudumalai arc
suoject to more disturbances, causing greater patchiness. The
persistence curve at Mudumalai can predict HKK and converscly
within 17%, given | ha of data. Compared with BCI, Pasoh, and
Lambir, the accuracy of Eq. 2 has been decreased by the
disturbances at Mudumalai and HKK. Nevertheless, 17% error
is still preferable to the 28% crror-rate or worse given by Fisher's
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alpha or a power law on these disturbed forests. In practice, when
estimating diversity in a new forest, the ccologist should first
determine the frequency of disturbances (e.g., fires, hurricanes,
or roaming clephants) and choose a model forest, where o and
B arc known, accordingly.

Extrapolation Beyond 50 ha. For 50-ha predictions, such as would
be usclul to assess logging protocols, & provides a simple,
two-parameter model of the persistence curve. For larger
arcas, however, a cubic model (which works as well as & at 50
ha) is often more cffective. For example, we can use a cubic
persistence curve calibrated at Pasoh to extrapolate the di-
versity of the entire BCI, which occupics 1,500 ha, from a 1-ha
sample. Using Eq. 2, the predicted diversity for all of BCI is
436 + 32spccics (1 SD). This estimate comparcs favorably with
Croat’s floral count of 450 tree and shrub species on the isinnd
(27). For cven larger arcas, the persistence curve should be
parameterized by using multiple, small censuses spread across
the landscape (as in ref. 28), although such techniques require
further development.
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